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Abstract
High-resolution topographic data are crucial for delta water management, such as hydrological modeling, inland flood 
routing, etc. Nevertheless, the availability of high-resolution topographic data is often lacking, particularly in low-lying 
regions in developing countries. This data scarcity poses a significant obstacle to inland flood modeling. However, collecting 
detailed topographic data is demanding, time-consuming, and costly, making remote sensing techniques a promising 
solution for developing flood inundation analysis models worldwide. This study presents a novel understanding for utilizing 
topographical elevations obtained using remote sensing techniques to create a flood inundation analysis model. In a study of 
three watersheds, Kameda, Niitsu, and Shirone (Japan), the assessment of digital terrain models (DTMs) showed that remote 
sensing-based DTMs (RS-DTMs) exhibited high reliability of coefficient of determination (R2) and root-mean-square errors, 
compared with the airborne LiDAR-based topography from the Geospatial Information Authority of Japan. Comparing the 
flood modeling results from LiDAR data and RS-DTM, with Kameda and Niitsu performing favorable outcomes, Shirone 
exhibited less accurate results. We hypothesized that this was caused by the topographic distortions due to lack of evenly 
distributed reference points. Hence, we revised the topography by adjusting both the slope and intercept from the regression 
equation. This verification successfully showed that the flood inundation volume correlation improved, achieving R2 results 
for the three watersheds ranging from 0.975 to 0.997 and Nash–Sutcliffe Efficiencies ranging from 0.938 to 0.986 between 
the resulting flood models based on the LiDAR data and RS-DTM. Based on these findings, we recognized the significance 
of uniformly distributed geodetic height points. In areas lacking height references, high-precision survey instruments can be 
employed for achieving uniform distribution.
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Introduction

Spatial technology is an emerging approach that 
incorporates geographic information using remote 
sensing (RS), geographic information systems (GIS), 
and other instruments and devices (Wilson 2012). These 
techniques can provide digital elevation models (DEMs), 
that is, computer representations of elevation using a two-
dimensional (x–y value) array of data containing height 
information as z values (Burrough & McDonnell 1998). 
A DEM comprises both a digital terrain model (DTM), 
representing the bare Earth’s surface, and a digital surface 
model (DSM) that captures the Earth’s surface, including 
aboveground features, such as buildings and vegetation. 
The representations of the x, y, and z values are shown 
as topographic (overland terrain) and bathymetric 
(underwater terrain) data. Topographic and bathymetric 
data have been utilized in many disciplines, such as 
geomorphology (Guth 2003; Stock et al. 2002), urban 
studies (Gamba et al. 2002), flood inundation modeling 
(Ettritch et  al. 2018; Chen et  al. 2018; Meesuk et  al. 
2015; Merkuryeva et al. 2015; Rau et al. 2021), and flood 
analyses of lowland areas (Yoshikawa et al. 2011; Kimura 
et al. 2019; Nguyen et al. 2020).

The availability of high-resolution topographic data 
is crucial for various geospatial applications, including 
flood modeling. However, obtaining accurate topographic 
information remains a challenge, particularly in lowland 
areas, where minimal height differences make reliable 
measurements difficult. Collecting detailed topographic 
data can be demanding and time-consuming, requiring 
extensive effort and specialized equipment, such as 
unmanned aircraft vehicles (UAVs), airborne surveys, light 
detection and ranging (LiDAR) technology, or terrestrial 
mapping techniques (involving electronic total stations or 
global navigation satellite system (GNSS)). Moreover, the 
high costs associated with these approaches pose significant 
challenges.

Inundation f lood modeling plays a vital role in 
assessing and managing flood risks in lowland/delta areas. 
Accurate and reliable flood modeling requires detailed 
topographic data, enabling precise mapping of the terrain 
and identification of flood-prone areas. High-resolution 
DTMs are essential to predict the extent and depth of 
flood inundation, as demonstrated by Escobar–Silva et al. 
(2023). This is attainable with the use of airborne LiDAR to 
penetrate vegetation and accurately capture ground surface 
information, even in densely vegetated areas. Therefore, 
LiDAR is commonly used as an accurate data source in 
various geospatial studies (Lefsky et al. 2002), including 
flood modeling and assessment (Wedajo 2017). However, 
applying flood inundation models worldwide presents 

various challenges, particularly in developing countries with 
limited access to detailed elevation data (Mesa–Mingorance 
& Ariza–López 2020).

While the importance of combining flood models with 
remote sensing has been discussed in previous studies (Néelz 
et al. 2006; Xu et al. 2021; Jiang et al. 2022), and correction 
techniques for digital elevation models (DEMs) using 
remote sensing data have also been introduced (Pavlova 
and Pavlova 2018; Magruder et  al. 2021), the creation 
of a remote sensing-derived DTM specifically designed 
for flood modeling remains unaddressed. Therefore, in 
this study, we assessed the applicability of topographic 
elevations generated by remote sensing approaches or a 
remote sensing-based DTM (RS-DTM) to develop a flood 
inundation analysis model. This study aimed to quantify 
the performance of the DTM based on comparisons with 
available high-resolution data in Japan. This study discusses 
the data acquisition, processing, and verification of a flood 
inundation analysis model using topographic elevations 
generated by remote sensing techniques. The approach 
is expected to be further employed for the application in 
developing countries and worldwide.

Materials and methods

RS‑DTM establishment

To establish the remote sensing-based topography in this 
study, we integrated satellite imagery from various sources. 
This dataset served as the primary DTM (DTM master) 
and was subsequently updated with the latest vertical 
deformation data (Julzarika 2021) (Fig.  1). The DTM 
master acted as the central reference point for deriving 
the RS-DTM (Julzarika et al. 2021a). The initial step in 
obtaining the DTM master involved DSM extraction, 
which was customized to the specific input data type used, 
including satellite imagery, UAV, aerial images, synthetic 
aperture radar (SAR) (Rucci et al. 2012), stereo imaging, 
interferometry, LiDAR, videogrammetry, terrestrial surveys, 
or other mapping sensor varieties. The vertical accuracy 
and precision of the DSM were directly influenced by the 
quality of the input data (Julzarika et al. 2021b; Julzarika & 
Harintaka 2019), leading to the utilization of various DSM 
extraction methods tailored to different input data types.

In this study, a stereo model method was employed for 
DSM extraction using PlanetScope, WorldView-2, and 
Sentinel-1 images, gathered from specific acquisition dates 
with different spatial resolutions (Table 1). PlanetScope 
comprises eight multispectral bands, whereas WorldView-2 
comprises three or eight bands. Sentinel-1 is a single-look 
complex (SLC) level. Two DTMs were generated from the 
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PlanetScope and WorldView-2 imagery and subsequently 
integrated to produce the DTM master.

Moreover, vertical deformation information, which 
included uplift or subsidence, was derived from SAR 
images using the Differential Interferometric SAR 

(D-InSAR) method (Julzarika et al. 2021a). The outcome 
obtained from the application of the D-InSAR technique 
is represented as the vertical displacement along the line 
of sight (LoS). To obtain true vertical deformation, it was 
imperative to correct the LoS measurements. The vertical 

Fig. 1  Remote sensing-based digital terrain model (DTM) establishment

Table 1  Remote sensing data sources and acquisition information for Kameda, Niitsu, and Shirone watersheds

No. Watershed Data input Spatial resolution Acquisition date Source Data availability

1 Kameda PlanetScope 3 m 30-May-22 Planet Labs PBC Commercial (free for education and 
research program)

WorldView-2 50 cm 12-Nov-22 Maxar Technologies Commercial
Sentinel-1 10 m May-22—Feb-23 European Space Agency and the 

University of Alaska
Free

2 Niitsu PlanetScope 3 m 30-May-22 Planet Labs PBC Commercial (free for education and 
research program)

WorldView-2 50 cm 12-Nov-22 Maxar Technologies Commercial
Sentinel-1 10 m May-22—Feb-23 European Space Agency and the 

University of Alaska
Free

3 Shirone PlanetScope 3 m 31 October 2022 Planet Labs PBC Commercial (free for education and 
research program)

WorldView-2 50 cm 4 Juni 2020 Maxar Technologies Commercial
Sentinel-1 10 m Oct-22—Nov-22 European Space Agency and the 

University of Alaska
Free
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displacement, initially represented by the LoS, was 
subsequently converted into the true vertical deformation 
(Suhadha et al. 2022), which served as the final output of 
the RS-DTM.

Afterward, as part of the topography establishment, 
reference points were used to accurately georeference and 
align RS-DTM with the local coordinate system (JGD 2011), 
ensuring precise spatial representation (Bruinsma et al 2012; 
Jurjević et al 2021). For this study, nine reference points 
were used, all of which were electronic reference points and 
first-class control points, obtained from GSI (GSI 2023) 
and represented with official GSI codes, as shown in Fig. 2. 
The primary use of elevation data from each point was to 
establish the height reference for three study watersheds in 
Niigata Prefecture, Japan. The Kriging method (Hengl et al. 
2007) was employed to interpolate elevation values between 
the nine reference points.

Assessment of RS‑DTM

The RS-DTM was assessed using a hydrodynamic flood 
inundation model (Yoshikawa et al. 2011). In this flood 
inundation model, the planar analysis domain is represented 
in topographically adjusted cells (hereafter referred to as 
“cells”). A cell is an arbitrary polygonal structural grid 
whose shape can be freely set based on the boundaries of 
roads, railroads, rivers, and other land use zones that affect 
flooding phenomena as well as elevation values (Yasuda 
et al. 2003). Each cell consists of terrain-fitted sides, which 
serves as boundaries performing as the cells' edges (hereafter 
referred to as “sides”). These sides encapsulate elevation 
information within the nodes of the line. Cell formation 
involves their division into basins, drainage areas, and cells. 
The shape and arrangement of the cells were varied. In this 
study, the manual division of cells based on land use was 
performed. The division of cells was guided by considering 
obstacles to flood propagation, with the aim of aligning 

Fig. 2  Reference points used for RS-DTM establishment
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the cell edges with natural barriers. The established cells 
served as fundamental units for conducting flood inundation 
analyses.

In this study, the applicability of the RS-DTM was 
verified by comparing it with a validated inundation analysis 
model constructed using an airborne LiDAR-based DTM 
with a spatial resolution of 5 m and vertical accuracy of 
0.1 m, which was provided by the Geospatial Information 
Authority of Japan (GSI) (2020). An initial comparison was 
conducted to determine the most appropriate cell-extraction 
method. The correlation of cell elevation between the two 
sources was evaluated using three approaches: centroid, 
mean, and median. To evaluate the reliability of the DTM, 
statistical performance indices were used to assess the 
degree of agreement between simulated and observed values. 
The two indices used in this study were the coefficient of 
determination (R2) and the root-mean-square error (RMSE) 
(Harel 2009; Van Liew et al. 2003).

Finally, flood inundation analyses were conducted within 
the three watershed areas, based on previous research. These 
analyses focused on generating a time series of inundation 
depth and inundation volume for a 2-day rainfall event 
within these watersheds. The findings using LiDAR-based 
DTM from Yoshikawa et al. (2011) were utilized, where the 
model was subsequently rerun utilizing RS-DTM. In this 
assessment, the spatial distribution of the flood inundation 
depth at peak time was compared in addition to the time 
series variation of the inundation water volume from the 
two elevation datasets for a rainfall event with a 100-year 
replication period as the extreme flood event (1% chance 
of occurrences in any given year). Details of the calculated 
floodwater volume are provided below.

where V is the floodwater volume within the watershed, A is 
the area of the inundated cells, d is the water depth, and n is 
the total number of calculations based on each cell.

The comparison was then undertaken using two main 
statistical approaches: the coefficient of determination (R2) and 
the Nash–Sutcliffe efficiency (NSE). The NSE is a normalized 
statistic that determines the relative magnitude of the residual 
variance (“noise”) compared to the measured data variance 
(“information”) (Nash and Sutcliffe 1970).

(1)V =
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i
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where Y
i

obs is the i the observation for the constituent being 
evaluated, Y

i

sim is the i the simulated value for the constituent 
being evaluated, whereas Ymean is the mean of observed data 
for the constituent being evaluated, and n is the total number 
of observations.

Study sites

We selected three watersheds in Niigata Prefecture, namely 
Kameda (9620 hectares), Niitsu (5120 hectares), and Shirone 
(7510 hectares) for our study. These areas were specifically 
chosen due to the existence of previously established flood 
inundation analysis models established with LiDAR-based 
DTM data (Table 2). The numbers of cells in the Kameda, 
Shirone, and Niitsu models were 13,800, 9600, and 20,800, 
respectively. A common feature of these watersheds is that 
they are located on an alluvial plain downstream of the 
Shinano River, the longest river in Japan (367 km), and their 
topography is extremely flat and low in elevation. Owing to 
these topographical conditions, drainage pump stations are 
located at the downstream end of each watershed, and pumps 
are always in operation to discharge water into the river. This 
causes flooding problems when rainfall exceeds the pumping 
capacity.

Results

Topography creation results

RS-DTMs were established for the three watersheds. The 
generated DTMs for the three areas considered the weight 
of each input data from PlanetScope, WorldView-2, and 
Sentinel-1, and the covariance between the parameters 
used had a spatial resolution of 1 m and a vertical accuracy 
of < 1 m, satisfying a confidence level of 95% (1.96σ) (Fig. 3). 
The surface features and cross sections of a sample area 
within the study area of Kameda are shown in the following 
visualizations: (a) shows the DTM feature from the LiDAR 
data, and (b) shows the topography of the RS-DTM within 
the same area.
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Table 2  Topographic 
characteristics of Kameda, 
Niitsu, and Shirone watersheds

No. Watershed Cell size  (m2) Average differences 
between each cell (m)

Average slope

Average Minimum Maximum

1 Kameda 6966 65.73 382,745 0.19 1/2990
2 Niitsu 5290 20.45 161,256 0.29 1/4000
3 Shirone 3575 16.80 67,486 0.22 1/2720
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RS‑DTM assessment results

The findings revealed that the R2 results obtained from 
centroid, mean, and median approaches had values exceeding 
0.93 (Table 3). The median approach was observed to be 
the most correlated among the other two approaches for the 
three areas, which is in line with the RMSEs, where the 
median approach exhibited the smallest errors compared 
with the other two approaches in all areas. The RMSEs of 
the three watersheds varied between 0.285 and 0.718 m.

Subsequently, using the median-based approach to 
determine the representative elevations of individual cells, 
the average, minimum, maximum, and height difference 
elevations of the three watershed areas (Table  4) were 
determined. The results revealed a distinction in the 
observed patterns among the Kameda, Niitsu, and Shirone 
watersheds. In particular, the slopes of the regression 
lines for Kameda and Niitsu watersheds were 1.0005 and 

0.9931, respectively, which are significantly close to 1, 
confirming their high reliability. In contrast, Shirone’s data 
exhibited a slope of 0.9431, indicating a slope deviation 
of approximately 6% (Fig. 4). As for the intercepts of the 
respective regression lines, the values were 0.061 for the 
Niitsu, − 0.072 for Kameda, and -0.095 for Shirone, which is 

(a)

Fig. 3  Surface topography of a 5-ha sample area in the Kameda watershed using a LiDAR data and b self-established remote sensing-based 
DTM

Table 3  Statistical results of comparisons between RS − derived 
elevation with LiDAR elevation

Approach Statistical parameters Study site

Kameda Niitsu Shirone

Centroid R2 0.943 0.956 0.936
RMSE (m) 0.431 0.718 0.465

Mean R2 0.943 0.965 0.966
RMSE (m) 0.322 0.624 0.404

Median R2 0.963 0.994 0.967
RMSE (m) 0.247 0.234 0.385
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(a)

Fig. 4  Comparisons of DTM between LiDAR, remote sensing-based DTM, and modified RS-DTM in a Kameda, b Niitsu, and c Shirone

Table 4  Comparisons of 
elevations using the median-
based approach

No. Watershed LiDAR elevation (m) Remote sensing-based elevation 
(m)

Ave. Min. Max. Ave. Min. Max.

1 Kameda 1.10 − 1.86 11.60 1.20 − 1.33 12.12
2 Niitsu 4.18 0.82 58.88 4.41 0.12 58.97
3 Shirone 1.95 − 0.73 12.45 1.73 − 0.99 11.80
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well within the acceptable range considering that the vertical 
accuracy of the LiDAR-based DTM is 0.1 m.

Application and modification of RS‑DTM for inland 
flood modeling

Application of RS‑DTM’s original elevation for inland flood 
modeling

By applying the constructed RS-DTM to create an inland 
flood model, the analysis of water volume hydrographs 
revealed a consistent trend that aligned closely with 
the curves calculated using LiDAR elevation data 
(Fig. 5). Notably, the results from the Kameda watershed 
demonstrated the most promising outcomes, with a peak 
flood inundation volume difference of 0.07 ×  105  m3. For 
the Niitsu watershed, the peak water volume difference 
accounted for 0.95 ×  105  m3, whereas the Shirone 
watershed exhibited the largest difference reaching 
2.05 ×  105  m3.

Furthermore, both Kameda and Niitsu methods showed 
R2 and NSE values exceeding 0.9, indicating satisfactory 
results. In contrast, the Shirone watershed exhibited a 
weaker correlation than the two watersheds. Although the 
R2 value was classified as very good, the NSE yielded in a 
‘good’ category outcome (Table 5). Based on these results, 
a general approach to overcome less correlated outcomes 
is necessary.

Topography revision based on intercept and slope 
from regression analyses

The authors hypothesized that a weaker correlation 
observed in the Shirone area could be attributed to 
unevenly distributed reference points. Consequently, we 
investigated whether better results could be obtained by 
adjusting both the slope and intercept of the regression 
equation to correct for topographic distortions due to lack 
of evenly distributed reference points.

The slope value for Shirone watershed was 0.9431, 
indicating a roughly 6% deviation, while those of Kameda 
and Niitsu were close to 1 (Table 6), indicating a near-
perfect alignment with the expected slope. The height 
difference map indicated that greater disparities were 
observed in regions more distant from the reference 
points employed, especially in the southern and western 
parts of Shirone (Fig. 6). Additionally, the map illustrated 
variations in slope between the LiDAR and RS-DTM, as 
evaluated along a cross-sectional line within the Shirone 
Watershed.

Moreover, the revision of topography in our 
adjustments was also undertaken to the intercept. In such 
cases, the intercept serves as a crucial reference point for 
the LiDAR and RS-DTM relationship. However, a near-
perfect slope implies that the predictive power of the 
RS-DTM is intact, and any adjustments to the intercept 
could potentially introduce unnecessary bias or error. 
Preserving the original intercept at a near-perfect slope 
condition ensures stability and accurate representation 
of both DTM relationships. Conversely, when slopes are 
deviated, revisions to the intercept may be necessary to 
align the RS-DTM with the LiDAR data more effectively. 
Hence, for both Kameda and Niitsu, in addition to the 
previously mentioned rationale, given the insignificance 
of intercept errors, we considered that no revisions are 
required. Consequently, only the Shirone area underwent 
revision, accomplished by multiplying the elevations by a 
factor of 1/0.9431 and adding 0.095 m for all elevations.

Based on the inland flood model, the changes involved 
all related topographic parameters, including both the 
cells and sides (nodes of each cell).

Revised RS‑DTM results

To assess the impact of the topographic revision, the water 
flood volumes were recalculated by considering the slope 
obtained from the regression analyses for Shirone watershed 
(Fig. 5). The results revealed a consistent trend that was 
more closely aligned with the curves calculated using 
LiDAR elevation data. In terms of the flood inundation 
volume difference at peak time, the difference was 1.15 ×  105 
 m3.

After incorporating the revised topographic elevation 
data for the Shirone watershed, the statistical performance 
improved significantly. The R2 value increased to 0.997, 
whereas the NSE value reached 0.938, both of which were 
classified as very good. These findings further support the 
accuracy and effectiveness of regression models based on 
topographic elevations for flood modeling applications.

In addition, visual representations in the form of maps 
were created to depict the flood inundation depth at peak 
time within each watershed (Fig. 7). These maps provide 
visualization of the extent of flooding in the study area. The 
inundation depth was classified into distinct categories: 
areas with a depth of less than 1 cm were classified as non-
inundated, whereas inundated areas were colored using 
shades of gray. The classifications for inundated areas were 
further divided into four categories based on water depth: 
0.01–0.2 m, 0.2–0.4 m, 0.4–0.6 m, and greater than 0.6 m. 
The maps reveal variations in inundation depth values, yet 
consistently show the overall consistencies of inundation 
representations across the three watersheds in both models.
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In addition, flood inundation area based on inundation 
depth at peak time between LiDAR and remote sensing-
based DTM were also compared (Fig.  8). Notably, the 
assessment based on peak inundation depth for the three 
areas revealed no significant differences between the 
approaches, despite the slight disparities.

Discussions of RS‑DTM for inland flood modeling

Based on the statistical performance results, RS-DTM 
is feasible for use in inland flood modeling. However, 
the original findings revealed a relative shift in elevation 
compared with the actual topography. As we hypothesized, 
the establishment of consistent (equally scattered) geodetic 
height references is crucial for ensuring a standardized 
base elevation. In the study, the RS-DTM was developed 
based on a set of nine reference points, of which only three 
references points were situated within the watersheds. The 
results showed that even though the RS-DTM had a 95% 
confidence level, there was distortion in areas far from the 
reference points, resulting in larger relative errors in the 
southwestern part of the Shirone watershed.

Thus, we confirmed that the revision of DTM successfully 
enhanced the correlation in Shirone watershed between flood 
inundation volumes derived from the LiDAR data and the 
flood modeling outcomes generated using the RS-DTM. 
Overall, this approach validated that the non-uniform 
distribution of height references may be the primary factor 
contributing to the relative shift.

Furthermore, there were several factors might have 
contributed to this discrepancy, which could not be 
addressed. First, the conversion process from DSM to DTM 
lacked refinement, and the mathematical surface model 

used remained uniform across the entire DSM/DTM. 
This is demonstrated by the increased frequency of height 
differences in the northern region of the Kameda watershed, 
which corresponds to urban areas, while in the central 
region, the landscape is predominantly characterized by 
agricultural fields with fewer disparities in elevation (Fig. 6).

Second, temporal and angular discrepancies in the data 
acquisition may be problematic. These discrepancies can 
occur owing to several factors such as lens distortions, image 
alignment errors, or inaccuracies in camera calibration. The 
images were not sourced from a single acquisition, par-
ticularly for large areas. Variations in data acquisition also 
affected the incidence angle, which differed between acquisi-
tions. In addition to the influence of tree/building shadows, 
clouds, and their shadows, water surfaces introduce errors 
during the DSM extraction.

Finally, issues were potentially acquired through the 
transformation of the geodetic projection system from 
global (EGM, 2008) to regional (JPS, 2011). Geodetic map 
projection systems were employed during the conversion 
of DSM into DTM. The transformation from a global 
to a regional system introduces horizontal and vertical 
differences.

Conclusions and recommendations

In summary, topographic elevations generated by remote 
sensing approaches were used for reliable flood inundation 
analysis modeling. In a study of three watersheds in 
Kameda, Niitsu, and Shirone (Japan), the assessment of 
DTMs showed that the RS-DTM exhibited high reliability, 
with R2 values exceeding 0.93 and RMSE varying between 
0.234 and 0.718 m, based on a comparison of topography 
from the LiDAR.

The volume of flood inundation resulting from the LiDAR 
and original extracted RS-DTM elevations showed good 
results—Kameda and Niitsu yielded R2 and NSE values 
that exceeded 0.9. On the other hand, despite achieving a 
‘very good’ classification for R2, the Shirone watershed 
exhibited a weaker NSE correlation, falling within the 
‘good’ category. Therefore, the topography was adjusted to 
enhance the correlation between the resulting flood model 

Table 5  Statistical performance results using originally derived 
RS-DTM

No. Watershed Statistical performance

R2 Rating NSE Rating

1 Kameda 0.992 very good 0.986 very good
2 Niitsu 0.975 very good 0.957 very good
3 Shirone 0.991 very good 0.799 good

Table 6  Modified intercept and coefficient results for topographic revisions

No. Watershed Regression analysis formula Coefficient/slope Relative slope 
revision

Intercept/constant Relative 
elevation 
revision

1 Kameda y = 1.0005x−0.0718 1.0005 –  − 0.0718 –
2 Niitsu y = 0.9931x + 0.0653 0.9931 –  + 0.0613 –
3 Shirone y = 0.9431x−0.0953 0.9431 1/0.9431  − 0.0953  + 0.0953
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Fig. 6  Height differences and 
cross-sectional profile between 
LiDAR and remote sensing-
based DTM
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derived from the LiDAR data and RS-DTM. This revision 
at Shirone watershed successfully improved the correlation, 

achieving R2 results for the three watersheds ranging from 
0.975 to 0.997 and NSE values ranging from 0.938 to 0.986 
between the resulting flood models based on the LiDAR 
data and RS-DTM.

Based on the findings of this study, the utilization of 
geodetic height references holds significance, particularly in 

Fig. 7  Visual comparison of flood inundation depth at peak time 
between LiDAR results, remote sensing-based DTM outputs, and the 
differences in a Kameda, b Niitsu, and c Shirone
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ensuring that reference points are evenly distributed across 
the study site. Unevenly distributed reference points can lead 
to certain areas of the study site being disproportionately 
influenced by less accurate interpolated elevations, 
ultimately causing a relative shift within the study area. 
Hence, if a sufficient number of height references are 
unavailable to ensure uniform data coverage within a study 
site, the utilization of instruments such as static GNSS and 
electronic total stations, which provide precise positioning 
and elevation measurements, is feasible. In such scenarios, 
interpolation can provide satisfactory and representative 
height references.

In conclusion, the utilization of RS-DTM with uniformly 
distributed height references in lowland regions offers cost-
effective advantages by reducing labor-intensive efforts and 
eliminating the need for extensive fieldwork. The availability 
of RS-DTM data reduces reliance on specialized equipment 
and personnel, streamlines workflow, and reduces financial 
burden. Moreover, the DTM enables flood modeling studies 
in flood-prone regions worldwide, including lowland/river 
delta regions, particularly in developing countries with 
limited access to high-resolution DTMs.
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